Answer:

The probability is just the ratio of the volume occupied by stars to the total volume of the galaxy:
[ly = light year]
Volume of galaxy $=\frac{4}{3} \pi \mathrm{r}^{3}=\frac{4}{3} \pi \times\left(10^{5} \mathrm{ly}\right)^{3}$

$$
=\frac{4}{3} \pi \times 10^{15} \mathrm{ly}^{3}
$$

Volume occupied by stars $=$ number of stars \times volume of a star

$$
\begin{aligned}
& =200 \times 10^{9} \times \frac{4}{3} \pi \times\left(6.96 \times 10^{10} \mathrm{~cm}\right)^{3} \\
& =\frac{4}{3} \pi \times 2 \times 10^{41} \times(6.96)^{3} \mathrm{~cm}^{3}
\end{aligned}
$$

Both volumes need to be in the same units:

$$
\begin{aligned}
& \qquad 1 \mathrm{ly}=9.47 \times 10^{17} \mathrm{~cm} \\
& \begin{aligned}
\text { Volume of galaxy } & =\frac{4}{3} \pi \times 10^{15} \times\left(9.47 \times 10^{17} \mathrm{~cm}\right)^{3} \\
& =\frac{4}{3} \pi \times 10^{66} \times(9.47)^{3} \mathrm{~cm}^{3}
\end{aligned}
\end{aligned}
$$

Finally find the probability:

$$
\begin{aligned}
\text { Probability }=\frac{\text { volume occupied by stars }}{\text { volume of galaxy }} & =\frac{\frac{4}{3} \pi \times 2 \times 10^{41} \times(6.96)^{3}}{\frac{4}{3} \pi \times 10^{66} \times(9.47)^{3}} \\
\approx \frac{10^{44}}{10^{69}}= & 10^{-25}
\end{aligned}
$$

The galaxy is almost empty.

